TRAINING DETECTORS

Sept. 9, 2014

AND RECOGNIZERS IN |j'smAr 2014

Joseph Howse

PYTHON AND OPENCYV

e 0O Interactive Cat Face Recognizer

GOALS

Build apps that
learn from
photos & from
real-time
camera input.

Detect &
recognize the
faces of
humans & cats.

This looks most like San.
San| | Add to Model The distance is 24. | Clear Model

GETTING STARTED

TERMINOLOGY

®= This tutorial covers detection and recognition...
" not to be confused with tracking.
= Detect
" Find the location of some type of object in an image.
= “] detect that this region of the image is a human face.”
= Recognize
= Determine the subtype or the unique identity of a detected object.
= “l recognize that this human face is a male face.”
= “l recognize that this human face is Joe Howse’s face.”

® Track

= Determine whether the same detected object is present in
consecutive images and, if so, how it moved.

= “] tracked this face in images 1 and 2; it moved from here to there.”

WHY OPENCV?

= Mid-level API
= Developer chooses algorithms and types of 1/0
= Library provides (semi-)optimized implementations
= Multi-lingual
= C++, C, Python, Java
®= Cross-platform
= Windows, Mac, Linux, BSD, iOS, Android
= Well supported on ARM Linux
= | have used it on Raspberry Pi (Raspbian) and Odroid U3 (Lubuntu).

= (Semi-)optimized
= TBB (x86, amd64, ARM), CUDA, OpenCL, Tegra 3+
= Some functions are optimized; others are not.

SETUP

PROJECT FILES

= Angora Blue
= My set of demo applications for face detection and recognition
= https://bitbucket.org/Joe_Howse/angora-blue
= https://bitbucket.org/Joe_Howse/angora-blue/downloads

= Three databases of images

1. VOC2007 dataset
= 10,000 annotated images of diverse subjects

2. Caltech Faces 1999
= 450 images of upright, frontal human faces

3. Microsoft Cat Dataset 2008
= 10,000 annotated images of cat faces in various orientations

= A download script for the databases is in Angora Blue:
= cascade_training/download_datasets.sh

DEPENDENCIES

= Python 2.7
= A multi-paradigm scripting language
= NumPy 1.8
= A math library for fast array operations with Pythonic syntax
= OpenCV 2.4
= A computer vision library with lots of algorithms and 1/0 features
= OpenCV Python treats images as NumPy arrays.
= WxPython 2.8, 2.9, or 3.0
= A GUI library, wrapping native GUI libraries on each platform

WINDOWS

= Download and run the following binary installers (either 32-bit
or 64-bit, depending on your needs):

= Python 2.7
= https://www.python.org/download

*“ NumPy 1.8
= http://sourceforge.net/projects/numpy/files/NumPy/1.8.1

= OpenCV 2.4
= http://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.9
= ...or build from source for options such as Kinect support

= WxPython 3.0
= http://www.wxpython.org/download.php

MAC

= Use the MacPorts package manager.
= http://www.macports.org/install.php

= Optionally, configure MacPorts to use my OpenCV repository,
which adds Kinect support.

= http://nummist.com/opencv/ports.tar.gz
" $ sudo port install python27 python_select py27-numpy
" $ sudo port select python python27

" $ sudo port install opencv +python27 +tbb

= ...or other variants, such as the following:
= $ sudo port install opencv +python27 +tbb +openni

= $ sudo port install opencv +python27 +tbb +openni_sensorkinect

= $ sudo port install wxPython-3.0

UBUNTU, DEBIAN, RASPBIAN, ETC.

" $ sudo apt-get install python-opencyv

= ...or build from source for options such as Kinect support. Example:
=" http://nummist.com/opencv/install _opencv_debian_wheezy.sh

® $ sudo apt-get install python-wxgtk2.8

WORKING WITH IMAGES,
CAMERAS, AND GUIS

BASIC IMAGE I/0 IN OPENCV

= Read image from camera:
= cameralD = O # Default camera
= capture = cv2.VideoCapture(cameralD)

= didSucceed, image = capture.read()
= The captured image is always in BGR (not RGB or gray) format.

= For optimized RGB or gray capture, use low-level camera libraries instead.

= | like this Python wrapper for Video for Linux 2 (v412):
= https://github.com/gebart/python-v4i2capture/blob/master/capture_picture.py

= Read image from file:

" image = cv2.imread('input.png')
= Write image to file:

= cv2.imwrite('output.png’, image)

OPENCV IMAGES IN WX GUIS

® Run OpenCV stuff on background thread; wx on main thread

= threading.Thread class and wx.CallAfter function
= Demo: InteractiveRecognizer.py
= __jinit__, _runCaptureLook, and _onCloseWindow methods

= Convert images from numpy.array to wx.StaticBitmap

= wx.BitmapFromBuffer function

= ...but this function is buggy on Raspberry Pi
= Fall back to wx.ImageFromBuffer and wx.BitmapFromimage functions

= Demo: utils.py
= wxBitmapFromCvimage function

DETECTING FACES

AVAILABLE DETECTION MODELS

= OpenCV supports several types of detectors, including these
two:
1. Haar cascade - relatively reliable
= Detects light-to-dark edges, corners, and lines at multiple scales

= http://docs.opencv.org/trunk/doc/py_tutorials/py_objdetect/
py face_detection/py face_detection.html#basics

2. Local binary pattern (LBP) - relatively fast
= Detects light-to-dark gradients at multiple scales

= http://docs.opencv.org/modules/contrib/doc/facerec/
facerec_tutorial.html#local-binary-patterns-histograms

= Both types use data stored in XML files.
= Neither type can detect rotated or flipped objects.

USING A PRE-TRAINED DETECTOR

= OpenCV comes with XML files for many pre-trained detectors

= Human face - frontal, profile, eyes, eyeglasses, nose, mouth

* Human body - upper, lower, whole

= Other - silverware, Russian license plates
= Basic usage:

= detector = cv2.CascadeClassifier('haarcascade_eye.xml')

= detectedObjects = detector.detectMultiScale(image)

= for x, y, width, height in detectedObjects: # Do something for each object
= detectMultiScale has important optional arguments:

= http://docs.opencv.org/modules/objdetect/doc/
cascade classification.html#cascadeclassifier-detectmultiscale

" Demo:
= InteractiveRecognizer.py: __init__ and _detectAndRecognize methods
= InteractiveHumanFaceRecognizer.py

TRAINING A CUSTOM DETECTOR

= OpenCV provides a pair of command line tools to generate
XML files for Haar or LBP detectors
1. opencv_createsamples or opencv_createsamples.exe
2. opencv_traincascade or opencv_traincascade.exe
= http://docs.opencv.org/doc/user_guide/ug_traincascade.htmli

= Among other parameters, they require text files listing negative and
positive training images (e.g. non-faces and faces).

= Demo:

= cascade_training/train.sh or cascade_training/train.bat
= The resulting XML file is used in InteractiveCatFaceRecognizer.py.

NEGATIVE TRAINING IMAGES

mGather 1000s of
images that do not
contain faces.

mlist the image paths

in a text file.

“ Demo: cascade_training/
negative_description.txt

®Preprocessing:

1. Convert to grayscale
= cv2.cvtColor

2. Equalize (adjust
contrast)
= cv2.equalizeHist

* Demo: cascade_training/
describe.py

= describeNegativeHelper
function

POSITIVE TRAINING IMAGES

= Gather 1000s of images = Preprocessing:

containing faces. 1. Convert to grayscale
mList the image paths u cv2..cvtCoIor
and face coordinates in 2. Straighten

= cv2.getRotationMatrix2D
= cv2.warpAffine
3. Crop
" humpy.array slicing
= crop = image[y:y+h, x:xx+w]
4. Equalize (adjust contrast)
= cv2.equalizeHist
* Demo: cascade_training/
describe.py

= preprocessCatFace function

a text file.

* Demo: cascade_training/
positive_description.txt

PREPROCESSING: REFERENCE POINTS

= To straighten & crop, we
need reference points.

A person places them
manually for each image!

" The Cat Dataset defines
8 reference points.

We use points 4 & 9 to
compute face size...

and 1 & 2 to compute face
rotation and center.

PREPROCESSING: CONVERT TO GRAY,

STRAIGHTEN, CROP, EQUALIZE

Before

“Can | haz atan2?”

PREPROCESSING: CONVERT TO GRAY,

STRAIGHTEN, CROP, EQUALIZE

2 , AN
“My ears mock your rectangle.”

RECOGNIZING FACES

AVAILABLE RECOGNITION MODELS

® OpenCV supports three types of recognizers:
1. Eigenfaces - relatively reliable
= Recognizes differences from the “average” face

= http://docs.opencv.org/trunk/modules/contrib/doc/facerec/
facerec_tutorial.html#eigenfaces

2. Fisherfaces - also relatively reliable
= Also recognizes differences from the “average” face

= http://docs.opencv.org/trunk/modules/contrib/doc/facerec/
facerec_tutorial.html#fisherfaces

3. Local binary pattern histograms (LBPH) - relatively fast
= Detects light-to-dark gradients at multiple scales
= Can learn new faces one-by-one in real time

= http://docs.opencv.org/modules/contrib/doc/facerec/
facerec_tutorial.html#local-binary-patterns-histograms

= All types use data stored in XML files.
= None of the types can detect rotated or flipped objects.

TRAINING AND USING A RECOGNIZER

1. Create a recognizer:
= recognizer = cv2.createLBPHFaceRecognizer() # or Fisher or Eigen
2. Train a recognizer:
= traininglmages = [joeO, joel, sam0, sam1]
= trainingLabels = numpy.array([0, O, 1, 1])
= recognizer.train(traininglmages, trainingLabels)
3. Get arecognition result:
= testLabel, distance = recognizer.predict(testimage)
4. Update an LBPH recognizer with more training images:
= # Only LBPH supports updates.
= recognizer.update(moreTraininglmages, moreTrainingLabels)
5. Save and re-load a recognizer
= recognizer.save('PeoplelKnow.xml')
= recognizer.load('PeoplelKnow.xml")
= Demo: InteractiveRecognizer.py
= __init__, _detectAndRecognize, _updateModel, _onCloseWindow methods

FURTHER READING

MY BOOKS

= Howse, J. OpenCV Computer Vision with Python. Packt Publishing,
2013.

= A brief introduction to OpenCV with Python
* Includes integration with NumPy, SciPy, OpenNI, & SensorKinect

= Howse, J. Android Application Programming with OpenCV. Packt
Publishing, 2013.
= A brief introduction to OpenCV with Android

= Howse, J. OpenCYV for Secret Agents. Packt Publishing,
forthcoming.

* Intermediate to advanced OpenCV projects using Python, Raspberry Pi,
Android, & other gadgets

= Analyze images of real estate, cats, gestures, cars, heartbeats, & more.

* Preorder & early access:
http://cdnil.cf.packtpub.com/opencv-for-secret-agents/book

OTHER BOOKS

= Baggio, D. L. et al. Mastering OpenCV with Practical Computer
Vision Projects. Packt Publishing, 2012.
" Intermediate to advanced OpenCV projects using C++
* Includes advanced chapters on human face detection, tracking, and
recognition
" Laganiere, R. OpenCV 2 Computer Vision Application
Programming Cookbook. Packt Publishing, 2011.

= Concise code samples in C++ for many popular algorithms

PAPER

= Zhang, W., Sun, J., and Tang, X. Cat Head Detection - How to
Effectively Exploit Shape and Texture Features, Proc. of
European Conf. Computer Vision, vol. 4, pp. 802-816, 2008.

= http://research.microsoft.com/pubs/80582/eccv cat proc.pdf

WEBSITES

= Python 2.7 docs
= https://docs.python.org/2

= NumPy docs
= http://docs.scipy.org/doc/numpy/reference
" OpenCV docs
= http://docs.opencv.org
= WxPython docs
= http://wiki.wxpython.org
®= Support site for my books
= http://nummist.com/opencv
= Abid Rahman K.’s OpenCV Python blog
= http://opencvpython.blogspot.com

= KittyDar: A cat detector in JavaScript
= http://harthur.github.io/Kittydar

DISCUSSION

Let us reflect
on what we
have learned.

